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Asymmetric Mannich reactions provide a powerful method for
synthesizing optically activeâ-amino carbonyl units, which are
useful chiral building blocks for a number of biologically active
and pharmaceutically important compounds.1 In particular, direct
asymmetric Mannich reactions between carbonyl compounds and
certain imines would be most desirable for this purpose.2-4

Accordingly, small organic molecules, such asL-proline and its
derivatives, were recently found to catalyze the reaction between
aldehydes and imines to furnishsyn- or anti-â-amino aldehydes as
a major product, depending on the choice of catalyst.3c,d While a
proline-catalyzed direct asymmetric Mannich reaction of imine4
gives thesyn-â-amino aldehyde,syn-5, preferentially with excellent
enantioselectivity through theanti-enamine intermediateA (Scheme
1),3c a general and selective method for obtaining the oppositeanti-
â-amino aldehyde,anti-5, remains unattainable.3d In this context,
we are interested in the possibility of obtaininganti-5 via thesyn-
enamine intermediateB by using a certain amino acid which has a
longer spatial distance between the amino and carboxyl groups than
L-proline catalyst. Our recently designed axially chiral amino acid
(S)-1,5 which catalyzes the direct asymmetric aldol reaction between
acetone and aldehydes, seems to be an appropriate candidate to
achieve the hitherto difficultsyn-enamine intermediateB resulting
from a decrease of the steric repulsion between the enamine and
acid moieties. In addition, the imine activated by the remote acidic
proton is expected to react preferentially with thesyn-enamine
intermediateB to give a desiredanti-isomer,anti-5. Our hypothesis
has been verified by designing an axially chiral organocatalyst of
type3 that allows a highlyanti-selective direct asymmetric Mannich
reaction between aldehyde and imine4 with excellent enantio-
selectivity.

First, we examined the direct Mannich reaction between iso-
valeraldehyde andR-imino ester4 derived fromp-anisidine and
ethyl glyoxylate. Thus, in the presence of 5 mol % of (S)-1, the
reaction between isovaleraldehyde (3 equiv) andR-imino ester4
in dioxane at room temperature afforded the correspondingâ-amino
aldehyde5 in 60% yield with theanti/syn ratio of 1:1.1 and
enantiomeric excess of 86% for theanti-isomer (Table 1, entry 1).
This low anti/syn selectivity prompted us to modify (S)-1 and
develop new axially chiral amino sulfonamides of type (S)-2 and
(S)-3 with a more remote acidic proton from the secondary amino
group than the carboxyl group in (S)-1.

The efficiency of these new catalysts (S)-2 and (S)-3 was
evaluated under the identical conditions, except for the use of lower
catalyst loadings (2 mol %). Unfortunately, attempted use of (S)-2
resulted in a significant loss of reactivity and enantioselectivity,
although moderateanti-selectivity was observed (Table 1, entry
2). In marked contrast, however, switching the catalysts from (S)-2
to (S)-3, which contains a more acidic trifluoromethanesulfonamide
group, dramatically enhanced both reactivity and stereoselectivities
in this system (93% yield;anti/syn ) >20:1; >99% ee for the
majoranti-isomer) (entry 3). We then examined the solvent effect

by using (S)-3 in the direct asymmetric Mannich reaction. Other
solvents, such as THF, EtOAc, DMSO, or CHCl3, were found to
be less satisfactory in terms of the chemical yield and stereoselec-
tivities (entries 4-7). Whereas the reaction in toluene solvent
proceeded smoothly with excellent enantioselectivity, a slight
decrease inanti-selectivity was observed (entry 8). Accordingly,
dioxane was determined to be the solvent of choice.

Scheme 1

Table 1. anti-Selective Mannich Reactions between
Isovaleraldehyde and R-Imino Ester 4 Catalyzed by (S)-1-3a

entry catalyst
mol
(%)

time
(h) solvent % yieldb anti/sync % eed

1 (S)-1 5 20 dioxane 60 1/1.1 86
2 (S)-2 2 24 dioxane 11 3.8/1 72
3 (S)-3 2 0.5 dioxane 93 >20/1 >99
4 (S)-3 2 6 THF 38 >20/1 99
5 (S)-3 2 6 EtOAc 72 8.3/1 90
6 (S)-3 2 6 DMSO 20 6.3/1 97
7 (S)-3 2 6 CHCl3 70 9.1/1 98
8 (S)-3 2 0.5 toluene 98 9.1/1 >99

a The reaction of isovaleraldehyde (3 equiv) andR-imino ester4 was
carried out in a solvent in the presence of catalyst (S)-1-3 at room
temperature.b Isolated yield.c Determined by1H NMR. d The enantiomeric
excess of theanti-isomer was determined by HPLC analysis using chiral
column (Chiralpak AS-H, Daicel Chemical Industries, Ltd.).
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The reaction between other aldehydes andR-imino esters in the
presence of a catalytic amount of (S)-3 was carried out in dioxane
at room temperature, and the selected data are summarized in Table
2. In the case ofprimary alkyl aldehydes, 1 mol % of (S)-3 is
sufficient to produce the correspondingâ-amino aldehydes in high
yields (>92%) with virtually complete enantioselectivities (99%
ee) and excellentanti-selectivities (>11/1) (entries 1, 3, and 5).
The catalyst loading can be reduced to less than 1 mol % of (S)-3
with slightly decreased yield and stereoselectivities (entries 2 and
4). Although the reaction of a sterically hindered aldehyde required
a higher catalyst loading and proceeded in moderate yield, optimal
anti-selectivity and enantioselectivity were observed (entry 7).
Moreover, this reaction system was also applicable to otherR-imino
esters (entries 8 and 9). It should be noted that self-aldol products
were not detected even in the presence of excess aldehyde (3 equiv).

The observed stereochemistry in the reaction using (S)-3 could
be explained by a transition state in which theSi face of theR-imino
ester approaches theSi face of thesyn-enamine as directed by the
rigid and distant trifluoromethanesulfonamide group (Figure 1, left).
On the other hand, due to the flexibility of the carboxyl group in

(S)-1, the C-C bond forming reaction catalyzed by (S)-1 takes place
not only on theSi face of thesyn-enamine but also on theReface
of the anti-enamine in the reaction catalyzed by (S)-1 (Figure 1,
right). As a result, bothanti- andsyn-isomers are obtained.

In summary, we have developed a highlyanti-selective direct
asymmetric Mannich reaction between aldehydes and theR-imino
ester catalyzed by the novel axially chiral amino sulfonamide (S)-
3. The procedure converts theR-imino ester to functionalâ-amino
aldehydes with significantly higheranti/syn ratio and enantio-
selectivity than previously possible. We are currently working to
expand the scope of this methodology and to apply the novel
sulfonamide catalyst for other organocatalytic asymmetric reactions.
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Table 2. anti-Selective Mannich Reactions between Various
Aldehydes and R-Imino Ester 4 Catalyzed by (S)-3a

entry R1 R2

catalyst
(mol %)

time
(h) % yieldb anti/sync % eed

1 Me Et 1 0.5 93 13/1 >99
2 Me Et 0.2 22 82 11/1 97
3 Bu Et 1 4 93 >20/1 99
4 Bu Et 0.5 8 92 >20/1 97
5 Bn Et 1 4 92 11/1 >99
6 i-Pr Et 2 0.5 93 >20/1 >99
7 t-Bu Et 5 16 42 >20/1 >99
8 i-Pr allyl 2 0.5 99 16/1 >99
9 i-Pr t-Bu 2 0.5 99 16/1 >99

a The reaction between aldehydes (3 equiv) andR-imino esters was
carried out in dioxane in the presence of (S)-3 at room temperature.b Isolated
yield. c Determined by1H NMR. d The enantiomeric excess of theanti-
isomer was determined by HPLC analysis using chiral column. Details are
given in Supporting Information.

Figure 1. Possible transition states for the direct asymmetric Mannich
reaction catalyzed by (S)-3 (left) and (S)-1 (right).
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